Vol. 5, pp. 1023-1028, 1971 Printed in the United States Pergamon Press, Inc.

THE INFLUENCE OF HYDROSTATIC AND SHOCK PRESSURE ON THE BCC \rightarrow (HCP, FCC) TRANSFORMATION IN Fe-Mn ALLOYS

by

Aristos Christou Materials Science Division Naval Weapons Laboratory Dahlgren, Va. 22448

(Received September 24, 1971)

1. Introduction

The pressure-induced phase transformations in iron-rich Fe-Mn alloys have been studied by the shock technique $^{(1-3)}$ and by the hydrostatic pressure technique $^{(4)}$. Christou and Brown $^{(2)}$ have found that the addition of manganese to iron decreases the shock transition pressure from 133 kbar for pure iron to less than 70 kbar for Fe-14 wt% Mn. For alloys up to 7 wt%, the FCC phase is stabilized, while the ε (HCP) phase is stabilized for the Fe-14 wt% Mn alloy. Saturation magnetization studies have detected a reduction in magnetization due to the high pressure phase.

Biles and Marder⁽⁴⁾ have studied the hydrostatic pressure induced transformation in Fe-Mn and have showed that for Fe-4.9 wt% Mn, Fe-9.6 wt% Mn and Fe-13.9 wt% Mn, the effect of manganese is to promote the formation of the HCP phase. In addition, in the case of Fe-13.9 wt% Mn and Fe-17.7 wt% Mn alloys, none of the HCP transformed back to BCC as the pressure was released. It is of interest to compare the two pressure-induced transformations (shock and hydrostatic pressure) and to explain the difference in the high pressure crystal structure of the two transformations.

2. The Shock-Induced Transformation

It has been shown⁽²⁾ that the addition of manganese to iron has modified the temperaturepressure diagram by increasing the field of stability of the FCC and HCP phase. Therefore, the shock loading of a BCC-martensite structure with an appropriate solute content results in an $a + \gamma$ or $a + \varepsilon$ transformation. Figures 1 and 2 show that the triple point has been lowered to about 90 kbar for Fe-7 wt% Mn and 70 kbar for Fe-14 wt% Mn, thereby stabilizing the FCC and HCP fields with respect to the BCC phase. The T₀-P (equilibrium temperature-pressure) lines for the Fe-7 wt% Mn and Fe-14 wt% Mn alloys as a first approximation were drawn parallel to the phase lines for pure iron, and were also made to pass through the two experimentally known states (T₀, P=0 and T_c, P_c). The temperature T_c is the temperature of the compressed solid at P_c, the transformation pressure, calculated using the equations of McQueen et al⁽⁵⁾. The calculation of the initial T₀-P slope (P=0, T=T₀) for Fe-7 wt% Mn and Fe-14 wt% Mn is based on the Clasius-Clapyron equation. The initial PT slope for the $a + \gamma$ transformation has the following values:

$$\left(\frac{dT}{dP}\right)^{\alpha \to \gamma} = -10.5$$
 °K/kbar

The enthalpy change $\Delta H_{\alpha \rightarrow \gamma}$ and the entropy change $\Delta S_{\alpha \rightarrow \gamma}$ are functions of temperature and solute ℓ concentration. Therefore, the slope of the T₀-P curve will deviate from the slope of the pure iron phase lines.

On the temperature-pressure diagrams of Figures 1 and 2 we may superimpose the Fe-Mn $T_{\rm H}$ -P states, where $T_{\rm H}$ is the temperature rise induced in Fe-7 wt% Mn and Fe-14 wt% Mn by the passage of a shock wave. To calculate $T_{\rm H}$ we must take into account the Rankine-Hugoniot equations, ⁽⁶⁾

$$H_{H} - E_{o} = 1/2 P_{H} (V_{o} - V)$$

(1)

(2)

where E is the total energy of the Fe-Mn alloy per unit mass. The internal energy may be approximated by the equation,

$$E \simeq u(V) + 3 Nk^2$$

In equation (2) u(V) is the ground state energy of the solid, T is the temperature, V is the volume, k is Boltzman constant and N is the number of atoms per gram. It can be shown⁽⁶⁾ that:

$$\mathbf{u}(\nabla) = \phi(\nabla) + \left(\frac{\nabla}{\nabla}\right)^{\gamma} \sum_{i=1}^{\nu} \sum_{i=1}^{\nu} (3)$$

where $\phi(V)$ is the cohesive energy, $\gamma = 1.6$, and v are the phonon frequencies. Equations (1) and (2) may be combined in order to obtain the expression for T_{u} :